α-Synuclein increases β-amyloid secretion by promoting β-/γ-secretase processing of APP

نویسندگان

  • Hazel L. Roberts
  • Bernard L. Schneider
  • David R. Brown
چکیده

α-Synuclein misfolding and aggregation is often accompanied by β-amyloid deposition in some neurodegenerative diseases. We hypothesised that α-synuclein promotes β-amyloid production from APP. β-Amyloid levels and APP amyloidogenic processing were investigated in neuronal cell lines stably overexpressing wildtype and mutant α-synuclein. γ-Secretase activity and β-secretase expression were also measured. We show that α-synuclein expression induces β-amyloid secretion and amyloidogenic processing of APP in neuronal cell lines. Certain mutations of α-synuclein potentiate APP amyloidogenic processing. γ-Secretase activity was not enhanced by wildtype α-synuclein expression, however β-secretase protein levels were induced. Furthermore, a correlation between α-synuclein and β-secretase protein was seen in rat brain striata. Iron chelation abolishes the effect of α-synuclein on neuronal cell β-amyloid secretion, whereas overexpression of the ferrireductase enzyme Steap3 is robustly pro-amyloidogenic. We propose that α-synuclein promotes β-amyloid formation by modulating β-cleavage of APP, and that this is potentially mediated by the levels of reduced iron and oxidative stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trafficking and proteolytic processing of APP.

Accumulations of insoluble deposits of amyloid β-peptide are major pathological hallmarks of Alzheimer disease. Amyloid β-peptide is derived by sequential proteolytic processing from a large type I trans-membrane protein, the β-amyloid precursor protein. The proteolytic enzymes involved in its processing are named secretases. β- and γ-secretase liberate by sequential cleavage the neurotoxic amy...

متن کامل

Effects of Folic Acid on Secretases Involved in Aβ Deposition in APP/PS1 Mice

Alzheimer's disease (AD) is the most common type of dementia. Amyloid-β protein (Aβ) is identified as the core protein of neuritic plaques. Aβ is generated by the sequential cleavage of the amyloid precursor protein (APP) via the APP cleaving enzyme (α-secretase, or β-secretase) and γ-secretase. Previous studies indicated that folate deficiency elevated Aβ deposition in APP/PS1 mice, and this r...

متن کامل

Effect of Different Phospholipids on α-Secretase Activity in the Non-Amyloidogenic Pathway of Alzheimer’s Disease

Alzheimer's disease (AD) is characterized by extracellular accumulation of amyloid-β peptide (Aβ), generated by proteolytic processing of the amyloid precursor protein (APP) by β- and γ-secretase. Aβ generation is inhibited when the initial ectodomain shedding is caused by α-secretase, cleaving APP within the Aβ domain. Therefore, an increase in α-secretase activity is an attractive therapeutic...

متن کامل

Docosahexaenoic acid reduces amyloid beta production via multiple pleiotropic mechanisms.

Alzheimer disease is characterized by accumulation of the β-amyloid peptide (Aβ) generated by β- and γ-secretase processing of the amyloid precursor protein (APP). The intake of the polyunsaturated fatty acid docosahexaenoic acid (DHA) has been associated with decreased amyloid deposition and a reduced risk in Alzheimer disease in several epidemiological trials; however, the exact underlying mo...

متن کامل

Catalpol Inhibits Amyloid-β Generation Through Promoting α-Cleavage of APP in Swedish Mutant APP Overexpressed N2a Cells

Amyloid-β (Aβ) peptides play a crucial role in the pathogenesis of Alzheimer's disease (AD), due to its neurotoxicity. Thus, blocking Aβ generation and aggregation in the brain has been realized as an efficient way for the prevention of AD. The natural product catalpol, isolated from Rehmannia glutinosa, has shown neuroprotective activities through inhibiting soluble Aβ production, degrading Aβ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017